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High-valent transition metal-oxo intermediates are highly reactive
electrophilic oxidants that are produced in the laboratory and in
industrial processes from reactions of various metal complexes with
sacrificial oxidants. Manganese(V)-oxo species in both porphyrin
and Schiff-base complexes are generally accepted to be the key
reactive intermediates in useful catalytic oxidatibasd high-valent
manganese intermediates are produced in photosystem Il for
oxidation of water to oxygefDirect spectroscopic observation and
isolation of MrY-oxo porphyrin intermediates has been a challenging
goal due to the high reactivity of these species. A major advance
in the chemistry of Mif-oxo intermediates was made in 1997 when
Groves et al. reported the isolation and characterization of a Wavelength (nm)
porphyrin-Mr¥-oxo specie$,and two other porphyrin-Mfroxo Figure 1. Time-resolved spectrum following LFP of complek in
intermediates have since been charactedzathese MN-oxo acetonitrile. The bleached signals frdnare negative absorbances, and the

. tained cationi | th hvrin Ti d signals from2 are positive absorbances. Time slices are at 0.13, 0.5, 1.2,
Species contained cauonic aryl groups on the porphyrin ring and 5 4 4 4 and 11.2 ms. The inset shows decay traces at 432 nm from reactions

were produced in water, which increases the stability of the in the absence of substrate (black) and in the presenceof1D3 M
intermediates. Non-porphyrin Mroxo species are known that are  cis-stilbene (red), where the signal intensities of the traces have been scaled

stable in comparison to porphyrin species; these include bis-amido-Such that the initial absorbances are equal.

Absorbance

bis-alkoxo, tetraamido, corrole, and corrolazine compléxes. 6000
We report here the formation of highly reactive porphyrin¥vin
oxo intermediates in acetonitrile via laser flash photolysis (LFP) 5000 1

methods and direct measurements of their rate constants for
oxidation reactions. The concept of the studies is based on the
general observation of photoactivated oxidations by transition metal
complexes in the presence of sacrificial oxid&tore specifically,
Suslick et al. reported photocatalytic oxidations by'NIRPPY salts
in the presence of perchlorate and periodate counterions, and 1000 : :
formation of transient M¥x+oxo species was indicated on the basis 0000 0.002 0004 0.005 0008 0010 0012 0014 0016
of the oxidation products observéd. [Substrate] (M)

Treatment of MH (TPFPP)(CIj with AgCIO, in acetonitrile gave Figure 2. Observed fast decay rate constants for reaction2 iof the
a perchlorate complext), which absorbed in the UWvis with presence otis-stilbene and ethylbenzene in acetonitrile solutions.

Amaxat ca. 470 nm. Upon addition of substrates suctigstilbene rate constant for oxidation of substrate, and [sub] is the concentra-
or diphenylmethane, the absorbance shifted slightij@ = 465 {io of substrate. Results for two substrates are shown in Figure 2,
nm. Irradiation with ca. 100 mJ of 355 nm laser light resulted in - 54 second-order rate constants are listed in Table 1. Epoxidation
bleaching of the 465 nm signal and instant formation of a species yf cjs stilbene was faster than oxidation of diphenylmethane and

that absorbed withlmax at 432 nm (Figure 1).We assign the  gthylbenzene, and the kinetic isotope effect for the reactiod of
transient produced by LFP as Mhoxo intermediate2 from with PhEt is 2.3

heterolytics-cleavage of an ©Cl bond in the perchlorate precursor

4000 | cis-stilbene

kobs (5-1 )

3000 -

2000 ethylbenzene

on the basis of the reactivity discussed below and the absorbance Kops = Ko T+ Ko [Sub] Q)
at 432 nm. Known porphyrin-Mfioxo species in water havigax
in the range 427443 nm3* A similar LFP experiment with the The kinetic results with2 were confirmed by conducting

nitrate salt of MH'(TPFPP) gave an M-oxo intermediate with a competition oxidations under catalytic turnover conditions. Thus,
weak absorbance at.x = 425 nm, from homolytic cleavage of  oxidations of mixtures of substrates were conducted with 0.1 mol
the O—-N bond?° % of the porphyrin-M# (Cl) salt andm-CPBA’ or PhlO as the

In the absence of reactive substraslecayed over ca. 30 ms  sacrificial oxidants. The results of the competition reactions between
in a biexponential process. In the presence of reactive substratescis-stilbene and diphenylmethane and between RiEeRd PhEt-
the fast decay component accelerated as a function of substrated, listed in the Supporting Information are in good agreement with
concentration, and the slow decay component was unaltered.the ratios of the absolute rate constants for the respective reactions,
Second-order rate constants for the reactions were determined byalthough the relative rate constants were sensitive to the identity
eq 1, wherek,ps is the pseudo-first-order rate constant for the fast of the sacrificial oxidant and solveht. Consistent with the
decay procesd is the background decay rate constgt,is the established oxygen insertion pathway for reactio8,efie observed
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Table 1. Rate Constants for Reactions of MnV-Oxo Intermediates?

Mn"-0xo0 substrate kox (M~1s7Y)

2 cis-stilbene (6.1 0.3) x 1C®
diphenylmethane (1.&203)x 1®
ethylbenzene (1.2& 0.03)x 10°
ethylbenzenehg (5.5+0.5) x 10*

4 cis-stilbene (1.10.1) x 10
diphenylmetharte <2x 10

6 cis-stilbene (4.3:0.3)x 10*
diphenylmethane (5.8 0.1)x 10°

aIn acetonitrile at (22+ 2) °C. The results for2 are from 2 to 4
determinations, and those féand6 are from 1 to 2 determination8 The

reaction was too slow to determine a rate constant accurately; the value is

the lower limit of the method.
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Figure 3. Left: Time-resolved spectrum éf produced by LFP of complex

5 in acetonitrile, reacting with diphenylmethane over 11 ms. Right: Time-

resolved spectrum from reaction of MGTMPyP)(CI) with m-CPBA in

acetonitrile over 40 s. The growing absorbances are froni' Mpecies.

Note that the formation 06 in acetonitrile was “instant” in the stopped-

flow unit under our reaction conditiorfs.

highly stereoselective formation ofs-stilbene oxide £ 95:5, cis:
trans) from oxidations otis-stilbene by catalytic MH(TPFPP)-
(Cl) with m-CPBA and by photoactivated (36@00 nm irradiation)
Mn"(TPFPP)(CIQ) in CH;CN and in PhCE solutions.
Manganese(V)-oxo species also were generated by LFP 8f Mn
(TPP)(CIQ)’ (3), giving oxo specied, and of M (TMPyP)(CIQ,)’
(5), giving oxo specie$. Groves et al. produced the Mioxo
speciesb via stopped-flow methods in water, whetgax was at
443 nm?3 but 6 hasimaxat 451 nm in acetonitrilé3 Figure 3 shows
time-resolved UV-vis spectra o6 produced by photolysis of the
perchlorate salb and from the reaction of M(TMPyP)(CI) with
m-CPBA. In the absence of substrates, decag ofas faster than
formation of M species.In the reaction withm-CPBA, we used
3 equiv of oxidant to drive the reaction to formation of the ‘Win
oxo species®, and the rate of decay @ is a measure of the rate
of consumption ofn-CPBA. We note that MYroxo specie® was
not detected from reaction of Mn(TPFPP)(CI) withCPBA.
Second-order rate constants for reactiordafith cis-stilbene
and for reaction o6 with cis-stilbene and diphenylmethane are
listed in Table 1. The reactivities of the Mioxo intermediates
with cis-stilbene and with diphenylmethane are in the or2ler 6

> 4, which is in agreement with the general observation that more

highly electrophilic metal-oxo complexes, by virtue of the electron-
withdrawing aryl groups, are more reactive oxidafits.
LFP formation of MiY-oxo species demonstrates that highly

reactive transition metal-oxo intermediates can be produced pho-
tochemically and studied directly. The method permits measure-
ments of absolute rate constants for oxidations of substrates rather

than relative rate constants that are obtained under catalytic turnover
conditions, and comparisons of the reactivity of various metal-oxo
species with one substrate are possible. Given tha¥-bd&o
intermediates are more reactive than analogous iron-oxo species,
the potential is good for extending the methods for studies of iron-
oxo species and possibly for generation of iron-oxo intermediates
in enzymeg®
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